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A new numerical method is applied to the solution of electromagnetic wave diffra-
ction problems on perfectly conducting screens. The method is based on a specia
class of Gaussian approximating functions that are used for discretization of the
original integral equation of the problem. These functions essentially simplify the
construction of the final matrix of the system of linear algebraic equations to which
the problem is reduced after the discretization. The method is developed for the
solution of 2D and 3D diffraction problems and the numerical results are compared
with exact and approximate solutions existent in the literature. The method may be
applied to the solution of awide class of the problems of mathematical physics that
can be reduced to boundary pseudo-differential equations.  © 2002 Elssvier Science (USA)
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1. INTRODUCTION

Numerical methods are widely used for the solution of el ectromagnetic wave diffraction
problems on perfectly conducting surfaces. Usually these problems are first reduced to the
solution of theintegral equationsfor the surface current and some variants of the boundary
element method (BEM) [1, 2] are applied to the numerical solution of such equations.

For the use of the BEM, the scattering surface should be divided into afinite number of
subareas and the unknown functions (the components of the current) are approximated by
standard (as a rule polynomial) functions in every subarea. After applying the method of
momentsor the coll ocation method, the problem isreduced to the solution of afinite system
of linear algebrai ¢ equations. The components of the matrix of thissystem areintegrals over
the subareas (boundary elements) of the surface. In the problem of scattering on perfectly
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conducting surfaces, these integrals are singular and the complexity of their calculations
depends on the type of approximating functions. In a standard BEM, a great portion of
the computer time is spent in calculating these integrals. A nontrivial auxiliary problemis
dividing an arbitrary surface into a set of boundary elements.

In this study, a new numerical method is applied to the solution of the diffraction prob-
lem under consideration. In this method the actual distribution of the surface current is
approximated by Gaussian functions located on the planes tangent to the scattering surface
at some homogeneous set of surface nodes. The idea to use these functions for the solu-
tion of a wide class of integral equations of mathematical physics belongs to V. Maz'ya
[3, 4]. Thetheory of approximation by Gaussian functionswas devel oped in the works of V.
Maz'ya[3, 4] and V. Maz'yaand G. Shmidt [5]; the multiresolution analysis based on such
functions was proposed in the work of V. Maz'yaand G. Shmidt [6]. These functions were
used for the solution of the integral equations of plane elasticity for areas with cracks in
[7-9].

The use of these functions for the solution of the integral equations of the diffraction
theory has two main advantages. First, the action of the integral operators of the problem
on these functions is a combination of few standard functions. The latter may be simply
tabulated, kept in the computer memory, and then used for the solution of any diffraction
problem. Asaresult, thetime for the cal culation of the matrix of thelinear system obtained
after the discretization of the problem is essentially reduced in comparison with a standard
BEM. It is also important that only the coordinates of the surface nodes and the surface
orientations at the nodes are necessary for the surface description in the present method.
The method was called by V. Maz’ yathe boundary point method (BPM) and inthelatter the
boundary points (nodes) play therole of boundary elements of the conventional BEM. Note
that the problem of covering an arbitrary smooth surface by a homogeneous set of nodes
is simpler than the detailed description of the geometry of all the boundary elements that
is necessary for the application of any traditional BEM to the solution of surface integral
equations.

The structure of the article is as follows. In Section 2, the integral equation of the the-
ory of monochromatic el ectromagnetic wave diffraction on perfectly conducting screensis
considered. In Section 3, the BPM is developed for 2D diffraction problems. It is shown
that after discretization of the problem using Gaussian approximating functions, the compo-
nents of the matrix of the linear system are combinations of three standard one-dimensional
integrals that depend on three nondimensional parameters (two nondimensiona distances
and a nondimensional frequency). For small values of the distances these integrals may
be simply tabulated and kept in the computer memory. Asymptotic expressions of these
integrals for large distances are obtained in the form of well-known special functions.
Examples of the numerical solutions of 2D diffraction problems for screens (a circular
infinite cylinder, a long plane strip, and a rough surface model) are presented in
Section 4.

In Section 5, themethod isdevel oped for the 3D case. Theaction of theintegral operator of
the 3D diffraction problem on Gaussian approximating functionsis obtained in this section.
As in the 2D case, the matrix of the linear system of the discretized problem depends
only on three one-dimensional integrals. The latter may be tabulated for small values of
nondimensional distances and have simple asymptotic expressions for large distances. In
Section 6, the numerical solutions of 3D diffraction problems for a perfectly conducting
spherical surface and for aplane circular disk are considered. The final conclusions and the
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discussion of the area of application of the method are presented in Section 7. A numerical
algorithm for generating a homogeneous set of nodes on an arbitrary smooth surface is
described in the Appendix.

2. THE INTEGRAL EQUATION OF THE PROBLEM OF ELECTROMAGNETIC WAVE
DIFFRACTION ON A PERFECTLY CONDUCTING SCREEN

L et a monochromatic electromagnetic wave of frequency o propagate through a homo-
geneous and isotropic medium with dielectric and magnetic permittivities ¢ and w. If the
dependence on time t is defined by the factor €, the amplitudes of electric E(x) and
magnetic H(x) fields in the medium satisfy the well-known Maxwell equations

V x HX) = i%gD(x), V.D(X) =0,
” 2.1)
VxE(x):—i?H(x), V-H(X) =0,

where the vectors of electric field E(x) and electric displacement D(x) are connected by
the equation

D(x) = cE(X).

Here X(X1, X2, X3) isapoint of the medium with Cartesian coordinates xj, V = g & is
the vector gradient, g (i = 1, 2, 3) are unit vectors of the axes x;; summation in respect to
repeating indexes isimplied. A dot (-) is the scalar product and (x) is the vector product
of vectors and tensors; ¢ is the wave velocity. For simplicity weassumethate =1, u =1
(vacuum).

Let Q2 be asmooth, perfectly conducting surface embedded in the medium. The electric
field E(x) in the medium with such a surface may be presented in the form [1]

E(x) = EO(X) — i % / V x [V x g(x — x)I(x)] de'. 2.2)
Q

Here E%(x) isan incident field that is assumed to be a plane monochromatic wave

E°(x) = eexp(—iko - X). Ko=kom, ko= % Im| =1, (2.3)
where Ky is the wave vector and e is the polarization vector of this wave. Operator V in
Eq. (2.2) acts with respect to point x.

The kernel of theintegral operator in Eqg. (2.2) isthe second derivative of Green function
g(x) of Helmholtz's operator

Vg(x) + k3g(x) = =8(x), A=V.V. (2.4)

Here §(x) is Dirac’s delta-function. In the 3D case, g(x) takes the form

—i Kor

, ' =|X|, X=X(Xg, X2, X3) (2.5
Arr

g(x) =



NUMERICAL METHOD FOR DIFFRACTION PROBLEMS 173

and in the 2D case, g(X) is

g(x) = —l—lHéZ)(kor), r=Ixl, X=X(X1,X), (2.6)

where H{? is zero-order Hankel function of the second kind.
The density J(x) of the potential in Eq. (2.2) is the surface current generated on 2 by
incident field E°(x). Vector J(x) belongs to €2 and thus the following equation holds:

nix)-Jx) =0, xeQ. 2.7

Here n(x) is a normal vector to the positive side of Q: for closed surfaces, n(x) is an
external normal; for unclosed surfaces, one of the sides of €2 should be chosen as the pos-
itive one.

Thefield E(x) in Eq. (2.2) satisfiesMaxwell’sequations (2.1) for any current distribution
J(x) on £ and thetangent componentsof thisfield arecontinuouson €2 [1]. Theintegral term
in Eqg. (2.2) may beinterpreted asthe field scattered on 2. Because the tangent components
of total electric field E(x) should be equal to zero on perfectly conducting surfaces, the
boundary condition on 2 takes the form [1]

nix) x Ex) =0, XeQ. (2.8)

The equation for the surface current follows from Egs. (2.2) and (2.8) in the form

i%n(x) X / V x [V x g(x —x)I(x)]dQ = n(x) x E%x), x e Q. (2.9
Q

It should be emphasized that the diffraction problem for screens (unclosed surfaces)
cannot be reduced to equations of the second kind by using the classical theory of the
potential of asimple or double layer (see the discussion in [10]). The appropriate equation
of this problem takes the form of the integral equation (2.9) of the first kind and its kernel
is hypersingular. Note that Eq. (2.9) is valid also for closed surfaces but in the latter case
the problem may be reduced to the integral equation of the second kind that does not have
such a high singularity [1].

Taking into account the equivalence

V x [V xgx—x)IX)] =[V® Vgx —x)]-IX) — Agx —xH)IX), (2.10)
where ® isthe tensor product, one can rewrite EQ. (2.2) in the form

E(X) = E%X) + ES(x), ES(X) = —i % /Q Kx—x)-Jx)dQ, (211

K(X) = V ® Vg(x) + k3g(x)1. (2.12)

Here Eq. (2.4) for Green function g(x) isused; 1 isthe second-rank unit tensor.
Let usintroduce projector 6(x) on the plane tangent to 2 at point x

O0x) =1-—nX)®n(x), xeQ. (2.13)
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Because vector J(x) belongsto €2, the following equation holds
0(x) - J(xX) = J(X),

and this is another form of Eq. (2.7). Using projector 8(x), the boundary condition (2.8)
may be rewritten in the following equivalent form:

0(x)-E(xX) =0, xeQ. (2.14)

The equation for J(x) that follows from Egs. (2.11) and (2.14) takes the form

471

ko U(x x)-J(x)dQ' = 0(x) - E%x), xeQ;

(2.15)
Ux, X)) =0(x) - K(x = Xx') - 0(x).

This equation is totally equivalent to Eq. (2.9). The integral on the left-hand side of
Eq. (2.15) has a strong singularity
U, X))~ [x =X whenx — xeQ
and should be understood in terms of some regularization. It is possible to demonstrate that
for an unclosed surface Q2 with the border T" the regularization formulafor thisintegral has
theform

/ U(x, x) - I(x)dQ' = v.p. / U(x, X) - [I(X) — I(x)] d’
Q Q
+0(x)-7{Vg(x—x/)®u(x/)dF/-J(x)+k§/ gx—xH)dQI(x), xeQ, (216)
r Q

where the first integral in the right-hand side is understood as its Cauchy principal value
(v.p). Herev(x) istheexternal normal to T at point X € ' (v issituated in the plane tangent
to Q at point x). For closed surfaces the integral over I" disappears.

If @ is an infinite plane x3 = 0 and J(x1, X2) is a function of S-space on 2, another
regularization formula of the operator in Eq. (2.15) may be proposed. (S-space consists
of infinitely smooth functions that tend to zero at infinity faster than any negative power
of |X|, X = X(Xq, X2).) In this case the field ES(x) in Eqg. (2.11) may be presented as a
convolution integral over 3D space and after using Fourier transforms of the integrand
functions we get

4
ES(X) = —i %C / K(x — X) - J(K)S(X - €3) dx’
. C — - = .
Here §(x - e3) isthe delta-function concentrated in the plane (X1, X2), K (k) is 3D Fourier

transform of tensor K (x) in Eg. (2.12), and J(k) is 2D Fourier transform of function J(X),
k = k(kg, ko, k3) isavector parameter of Fourier transform, k = k(kl, k2),

IZ(k):/K(x)exp(ik-x)dk: K1-k®k), k=Kl (2.18)

1
el
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After integration over coordinate ks in Eq. (2.17) the scattered field ES(x) takesthe form
ES(X, X3) = —i L/R(l?, x3) - (k) exp(—ik - X) dk, (2.19)
2kom

K (k, x3) - J(k) = Io(I? x3) (K21 — k ® k) - J(k) + l1(k, x3)(k - I(k))es,  (2.20)

lo(k, k. ko)l
ok, X3) = ﬁ(k ko) exp[—Ixa|B (K, ko)] .
I1(K, X3) = isign(xs) exp[—|x3|B(K, k)],
_ EZ _ k2 1/2’ EZ k()
BK, ko) = _( k(l) e - (2.22)
i (k3 —k?)™, k< ko

Herek = |IZ|, the sign of the square root in Eq. (2.22) for ,B(IZ, ko) is taken in order to
obtain outgoing scattered wavesin Eq. (2.19) for ES(X, X3). Because J(k) isalsoafunction
of S-space, the integral in Eq. (2.19) converges absolutely. Thus, in this case the left-hand
side of Eqg. (2.15) may be presented in the form of the absolutely converging integral

4;’00 UK = X) - J(X) dX —|—/U(|Z)-J_(|Z)exp(—il?>?)d|2,
) (2.23)
U(k)=9.K(k,X3)-9=m(kge—k@@k).

Itfollowsfromthisequationthat theintegral operator in Eqg. (2.15) isapseudo-differential
operator with the symbol U(K).

It was proved in [11, 12] that if kg = 0, a unique solution of Eq. (2.15) exists for every
smooth right-hand side and belongs to the Holder space CY/2(Q). If ko = 0 (static field)
the homogeneous equation (2.15) has a class of nontrivial solutions that was described in
[9, 10]. For thenumerical solution of Eq. (2.15) itisuseful totakeinto account theasymptotic
behavior of J(x) near the border I" of Q. Let v(Xp) be the normal to I and 7(Xxg) be the
tangent vector to I at point X € T" (vector v (Xp) belongs to the plane tangent to 2 at point
Xp). Scalar products v (Xp) - J(X) and T(Xp) - J(X) have the asymptotics near T" [12],

v-J=0("?), 7.3=0(""?), (2.24)

wherer = |X — Xg| isthe distanceto I" from point x € 2 in the direction of v(Xg).

3. NUMERICAL SOLUTION OF 2D DIFFRACTION PROBLEMS

For the numerical solution of Eq. (2.15) the class of Gaussian approximating functions
proposed in [3-6] will be used. Let u(x) be ascalar function in d-dimensional space RY.
If u(x) and its first derivative are bounded, u(x) may be approximated by the following
series:

N 1 x|
U(X) ~ Up(X) = mGZZd Un@(X —mh), @(X) = (2D)I2 @(p(—m) (3.1

Herem e Z9 isad-dimensional vector with integer components, hm are the coordinates
of the nodes of this approximation, h is the distance between the neighboring nodes, uy, =
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u(hm) is the value of the function u(x) at node x = hm, and D is a nondimensional
parameter. It is demonstrated in [3-5] that the following estimation holds:

JUC) — un()| < ch| VUl + Ju)IR(D), R(D) = O(exp(~7°D)).  (32)

Here | Vu|| isthe norm in the space of continuousfunctions, c = O(1). If hissufficiently
small the error of the approximation (3.1) may be made negligible by the appropriate
choosing of theparameter D (D = O(1)). Thepropertiesof thisapproximationwere studied
in detail in [3-5].

Let us consider an infinite perfectly conducting cylindrical surface that is parallel to the
axis xz, and I" is the intersection of this surface with plane (x1, X2) (see Fig. 1). If the wave
vector ko and the polarization vector e of theincident field E°(x) belong to the plane (X1, X2)
or if eisorthogonal to the latter, the diffraction problem is plane and its solution depends
only on two coordinates X, Xo. In the plane case, the electric field E(x) in the medium may
be presented in the form similar to Eq. (2.2),

4
E(X) = E%(X) + E%(x), E°(X) = —i %C / K(x —x)-J(x)dI". (3.3)
r
Here X = X(X1, X2), K(X) has form (2.12), where V is the 2D gradient and g(x) is the
2D Green function in Eg. (2.6). The equation for the surface current J(x) in the plane case
issimilar to Eq. (2.15)

i%/U(x, x)-JX)dQ = 6(x) - E°x): x €T, (3.4)
r

where the left-hand side should be understood in terms of the 2D analogy of regularization
(2.16).

FIG.1. Theglobal (e, &) and local (s”, n") bases in the intersection of a cylindrical surface.
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If we introduce the delta-function §(I") concentrated on I, the field ES(x) in Eq. (3.3)
may be presented in the form

E3(x) = —i % / K(x —=x)-J(x)s()dx/, (3.5)

where integration is spread over the 2D plane. For the numerical solution of Eq. (3.4)
let us choose a set of nodes x) on the contour ' with the same distances h between the
neighboring nodes and changethe potential (3.5) concentrated onI" for the sum of potentials
concentrated on the tangent lines y; to I' at points X, (see Fig. 1). Thus, the distribution
J(x)8(I") in Eq. (3.5) is approximated by the sum

I008() ~ Y~ IV (08 (), (36)

where §(y4) is delta-function concentrated on the tangent line 4 and the function ¢; (x) has
the form

) 4 (=)
52 . @3

1 (
@i (X) = @i (X1, X2) = (D)2 exD( -
After substituting Eq. (3.6) into Eq. (3.5) we go to the following approximation of ES(x):

ES(X) = —i %: / K(x —x) - I(X)8(I) dx’ ~ —i4nc2i:|<i>(x) I (38)

1D (x) = % / K (x — X)gi ()8 () dx'. (3.9

Let us consider the components I, (') of the integral 10 in the local coordinate system

(s, 2) with the origin at the i -th node (See Fig. 1):

(')(s 7) = ko// Kij(s—§,z—2Z)p(s)8(Z)ds,

S) = ! ex s
0 = o> ~ore )

Here s is the coordinate along the tangent line 3, and z is the coordinate along the
normal n® to I at the i-th node. In this local system vector n® has the components
nd =0, n{’ = 1and8(») = 8(2). Because I, (s, 2) isaconvolution integral, Eq. (3.10)
may be rewritten in the form

(3.10)

- 17 o
i'(s.2) = m//Kkj(kls ka) (ke “5H diky dko. (3.11)

Here KkJ (ky, ko) are the components of the tensor K(k) in Eqg. (2.18) if k is changed
fork, @ (k1) = hexp(— bh® kl) After integrating over k in Eq. (3.11) we go to an equation
similar to Eq. (2.19)

6 K
(ki, ko) B(ka, ko)

+ikisign@) (s @ n® +n® @ sV) + Bk, kon® ® n“))e"klz'. (3.12)

—/ K (K1, ko) exp(—ikoz) dk = 1(;3 sh @ sP
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Here s, n® are the unit vectors of the axes s and z, respectively,

(k)" kzko
i (k2 — k)%, Ky < ko.

After substituting Eq. (3.12) into Eg. (3.11) and integrating over k; we obtain the com-
ponents of the tensor 10)(s, z) in the local system of the i-th node. The scalar product
10 (s, 2) - IV in Eq. (3.8) takes the form

B(ky, ko) = { (3.13)

10, z)- IV = [ Joo(ko, S, 2)1 + i1 (ko, S, 2)S @ sV

KoD1/2

+ Jia(ko, 5, 20V @ V] - 30,
where scalar functions Juo(ko, S, 2), Ji1(ko, S, 2), Ji2(ko, S, 2) have the forms

Joolko, S, 2 = filko, n, ¢) — falko, 1, 8), Julko, S, 2 = —filko, n, ), Kko=Kkohy,
(3.14)
. S z DY?
‘le(K()’ 59 Z) =Sgn(é‘) fZ(KO, nv ;)’ )7 = > § = > h1= —h
hy hy 2
Three functions fj (xg, 1, ¢) of nondimensional variablesin Eq. (3.14) have the forms of
the following one dimensional integrals:

1 o0 k2dx
fyko 7. £) = ~ / cos(icry) expl—i? — |28k, ko)] -
2r Jo Bk, ko)
1 o
fateo. 1. 0) = 5= /O sinGien) expl—? — [k xo)]icdl, (3.15)

1 o0
folko. 1. 0) = 5 /0 cos(ic) expl—«? — (21 (k. x0)] B k. ko) dik.

If p = (¢%+ n?)%? > 10 these integrals may be changed with sufficient accuracy for
their asymptotic expressions

ik Kon? «2n?
filko.m.§) ~ = {Hfz)(Kop) - OTnHz(Z)(Kop)} exp(——gz )

4p
iK2 K2 2
fatia 1. £~ 2151 cop) ep( 27 ), (316)

ik Kol?2 2n?
f3(K09 n, g-) ~ 470 |:Hj(_2)(K0p) - og-HZ(Z)(KOIO):| exp<_072]> s
P P 0

where H?, H.? are the Hankel functions of the second kind and of order 1 and 2.

The integrals in Eq. (3.15) converge absolutely and for p < 10 they may be calculated
numerically, tabulated, and stored in the computer memory.

Letusintroduceaglobal Cartesian coordinatesystem (X1, Xz, X3) withthebasis(ey, &, €3)
and thelocal Cartesian systems(s, z, x3) withthebases (s, n", €}’) at every contour node
x® (Fig. 1). In the local basis the vector J© in Eq. (3.6) takes the form

IO = 3080 4 3. (3.17)
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The connection between the global and local bases has the form

sV = cos(B)er + sin(B)ez. N = —sin(B)ey + cos(B)e,. € = e3
and the connections between the local bases at the i-th and j-th nodes are
s = cos(y;)s” +sin(yin®, nY = —sin(y;p)s” + cos(y;in®, i = Bj — Bi.

Here g; is the angle between unit vectors e; and n® (Fig. 1).
Using the last equations and Egs. (3.8) and (3.14) the scattered field ES(x) at arbitrary
point X (X1, X2) in the global basis may be presented in the form

ES(xq, Xp) ~ —i47rcz 1D (xq, Xp) - IO
_ _Z\y (I) r(l) J(')s(')~|—\I/ 2( r® r(J))J(I)n(I) + Wy ( ('),rlﬁi))Jéi)eg
= _Z (I) r(l) ) cospi — Wia(r r® r(J)) Slnﬂ]J(')el

[\1111( rd r”))smﬂ + Wi (rd, r) cosp | I e

. 8rc rs rn
\yll(rS’ rn) = —I W f3 <K05 h71’ hl) )
. 8nc rs I'n
Wip(rs, n) = Dl/zsgn(rn) f2 (:co, hy h_1>’ (3.19)

8rc rs In rs rn
Y3(Ts.fn) =i 5175 [f1<Ko, hy’ hl) f3 <l<o, ~ hl)]

Herer{ andr " are the components of the vector r) of arbitrary point x(xy, X) in the
local basis (s, n®)
r® =rOgh 4 rOp® 1O = (%1 — (')) cos(B1) + (X2 — Xg)) sin(Bi),
-t . (3.20)
= —(xe — ) sin(B) + (x2 — x3) cos(Bi).

The tangential component of the field ES(x) on I is approximated by the equation

0(x) - E5(X) = —i drc / 0(x) - K(x —x")-Jx)dr’
ko Jr

4 . (3.21)
~ —idre) 01703V, seTl.
i
The value of this vector at the i-th node is presented in the form
o(xV) - ES(xV) = EPSV + EY e, (3.22)
ESQ ==Y [Wn(rdV,ry?) cos(Bj — i) — war (r{, 1) sin(s; — )] 330,
: (3.23)

EY = —Z Wy (rdD, rrﬁ”))Jéj).
i
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Here (r {1, r i) are the components of vector r ) that connectsthei-th and j-th nodes,
in the local basis of the j-th node. _

The system of linear algebraic equations for the components (J{", Js(,')) of the vectors
J® follows from the boundary condition (2.14) that should be satisfied at all the nodes
(the collocation method). If polarization vector e of the incident field Eq(x) belongs to
the plane (x1, x) the vector J© in the local basis of the i -th node has only s-component
(@D = 315Dy and the system for I takes the form

M
ZA;IJ)Jéj) = EX, (3.29)
j=1

Here M isthe total number of nodes; the components of matrix A; are
A = Wy (r80, 130 cos(yji) — War (r87, r D) singypp). (3.25)

EID = EX(x™) isthe s-component of the incident field in thei-th node.

If the polarization vector of theincident field is orthogonal to the plane (X1, X2) (Eo(X) =
EJ(x1, X2)€3) only thecomponents J5 of thevectorsJ® arenot equal tozero (I = J{e3)
and the system for J5" takes the form:

M
SOAD D = EXD, AT = w(r 00, 1), EXV = EQ(x). (3.26)
j=1

The components of matrixes A; and A, in Egs. (3.24) and (3.26) are expressed
via the standard functions f; (i = 1, 2,3) in Egs. (3.15) and (3.16). After solution of
Eqg. (3.24) or Eg. (3.26) the scattered field at arbitrary point x is to be calculated from
Eg. (3.18).

4. NUMERICAL RESULTSIN THE 2D CASE

1. Let an incident wave E© (x) with the wave vector ko = —kqe; and the polarization
vector e = e, be scattered on a perfectly conducting circular cylindric surface of a unit
radius (a = 1) (see Fig. 2). An analytical solution of this problem may be constructed by
the method presented in [13].

Inthiscase, only thelocal components Js of thecurrent arenot equal to zero andthesystem
for 3V (thevaluesof thecurrent at thenodes x ") hastheform of Eq. (3.24). Theelementsof
matrix A; of this system are expressed viathe standard functions f; (o, 1, ¢) in Egs. (3.15)
and (3.16). For the interpolation of these functionsin the region (n? + ¢?)/2 < 10 one has
to calculate the integrals in Eq. (3.15) at the nodes of a sguare interpolating mesh that
covers the area (10 x 10) of variables (1, ¢). For ko < 1 these functions are sufficiently
smooth and the step of the mesh may be taken about An ~ A¢ = 0.2. For theinterpolation
in respect to parameter «o the functions f; (ko, 1, ¢) should be calculated with the step
Ak ~ 0.1intheregion xo < 1. Note that parameter «o = Koh; should be lessthen 1 for a
sufficient accuracy of the incident field approximation. After constructing these functions,
the interpolating data may be kept in the computer memory and used for the solution of
any diffraction problem. For large distances ((n? + ¢2)%/? > 10) asymptotic expressions
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FIG.2. Theglobal (e, &) and local (s, n) basesin the intersection of acircular cylinder.

(3.16) for fj(xo, n, ¢) hold. In 2D case, D = 2 is an optimal value of parameter D in the
approximation (3.6), (3.7) (see[3-5)]).

Intheleft-hand side of Fig. 3 exact distributions of the surface current moduli |J(¢)| (solid
lines) along I are compared with the numerical solutionsfor kpa = kg = 1; 10. The nodes
are homogeneously distributed along thecircle; lineswith squares correspond to the number
of the nodes M = 20 (h = 0.314), lines with trianglesto M = 40 (h = 0.157), and lines
with dotsto M = 80 (h = 0.0785) for every koa. The graphs of the angular distributions
of the intensity of the far scattered field I n(¢) are presented in the right-hand side of
Fig. 3:

In(p) = ('E3(r, 9)1?)|r=100- (4.1)

For M = 80 the numerical solutions coincide practically with the exact current distribu-
tions. The LU-decomposition method was used for the solution of Eq. (3.24).
2. Let us consider scattering on a plane screen (long strip) (2 = {x; =0, -1 < x, <
1, —oo < X3 < oo}) when the wave vector ko = —kge; of the incident field E@ (x) is
orthogonal to the strip plane.
a) If the polarization e of E© (x) is directed along x,-axis (e = &), the current in the
strip has only e,-component

J(X2) = Ja(X2)en. (4.2

The distributions of the current moduli |J(X)|, (X = X2) in the strip and of the scattered
field intensity In(p) in the far zone (Eq. (4.1)) are presented in Fig. 4 for kg = 1; 10
and for various numbers of the nodes in the screen. (Here kg is in fact a nondimensional
wave number koL and 2L = 2 is the width of the strip.) Lines with squares in Fig. 4
correspondto M = 20(h = 0.1), lineswith trianglesto M = 40(h = 0.05), lineswith dots
toM = 60(h = 0.033), and solid linesto M = 80(h = 0.025). (¢ isthe angle between the
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FIG. 3. The distributions of the surface current moduli |J(x)| and the intensity 1 n(¢) of the far-scattered
field for acircular cylindrical surface of unit radius a = 1 for various numbers of surface nodes M, lines with O
correspond to M = 20, with A to M = 40 and with O to M = 80, solid lines correspond to the exact solutions,
ko = Koa is nondimentional wave number.

vector of the observation point in the plane (x1, X2) and axis x».) It is seen that the method
converges to alimit solution and the latter is practically achieved for M = 60.

b) Polarization along the axis of the strip: e = e3. For kg = 1; 10 the convergence of
the method may be seen from Fig. 5. The lines with sguares in these graphs correspond
to M = 20, lines with trianglesto M = 40, lines with dotsto M = 60, and solid lines to
M = 80. Itisseen from Figs. 4 and 5 that the behavior of the current distributions near the
edge of the strip corresponds to the asymptotics of the exact solution given by Eq. (2.24).
Long-distance angular distributions of the scattered field intensity |1 n(¢) are presented in
the left-hand side of Fig. 5.

3. Scattering on arough surface model:

Q={-10 < X1 < 10, Xo = AcCOS(X1), —00 < X3 < 00}.

Let theincident field E°(x) have the form

. ko 1
E0) = eexp(—iko-x), ko= (01— @), e= (@ +e).

(The angle between the vectors kg and e; is —7/4.)
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FIG. 4. The distributions of the surface current moduli |J(x)| and the intensity | n(p) of the fare scattered
field for an infinite strip, the incident field polarization is orthogonal to the axis of the strip. The lines with (I
correspond to a number of surface nodes M = 20, with A to M = 40 and with O to M = 80.

In Fig. 6 the angle distributions of the scattered field intensity | n(¢) (Eq. (4.1)) inthefar
zone for kg = 1; 5 and various amplitudes A (“roughness’) are presented. In these graphs
thelineswith triangles correspondto A = 0.1, lineswith rhombsto A = 0.5, and lineswith
dotsto A = 1. The number of the nodesis M = 400 and for such M the limit solutions
are practically achieved. The distances h between neighboring nodes along the surfaces are
h =0.052for A=0.1, h=0.073for A=0.5,andh = 0.115for A= 1.

The solid line on the graphs for ko = 5 corresponds to the so-called Kirchhoff ap-
proximation for the case A = 0.1. In this approximation the current at every point of
Q is assumed to be coincident with the current in the perfectly conducting plane tan-
gent to Q2 at this point [14]. It follows from the physical meaning of this approximation
that the latter serves better, the smaller is amplitude A (roughness) and the shorter is the
wave length of the incident field (larger ko). Qualitatively the behavior of Kirchhoff’s ap-
proximation in Fig. 6 is similar to the numerical solution but the latter gives five times
higher values of the maximum of the scattered field intensity than Kirchoff’s approx-
imation predicts. For A = 0.5 and A =1 (high roughness) Kirchhoff’s approximation
gives qualitatively wrong results and cannot be applied for estimating the scattered field
intensity.
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FIG.5. Thedistributionsof the surface current moduli |J(x)| and theintensity | n(¢) of the far-scattered field
for an infinite strip and various number of surface nodes M, the incident field polarization is parallél to the axis of
the strip. The lines with [J correspondto M = 20, A to M = 40, O to M = 60, solid linesto M = 80.
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FIG. 6. The angular distributions of the intensity I n(¢) of the far-scattered field for a rough surface model
(X, = Acos(rr X)) and various values of amplitude A. Thelineswith A correspondto A = 0.1, withOto A= 0.5
andwithOto A= 1.
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5. 3D DIFFRACTION PROBLEMS

In the 3D case, integral equation (2.15) may be presented in the form

i% Ux, ') - 30O ) dxX = 6(x) - EXX), X € Q. (5.1)

where € (x) isdelta-function concentrated on the surface Q2 and integration in this equation
is spread over 3D space. Following [3-5], for the application of the BPM, the scattering
surface should be covered by a set of nodes x®) (i = 1,2, ..., M) with approximately the
same distances between neighboring nodes. A numerical algorithm for constructing such
a set of nodes on an arbitrary smooth surface is presented in the Appendix. Let w; be the
tangent plane to Q at the i-th node. In the BPM the actua current distribution on Q is
changed for the following sum:

. 1 _x®
I00Q00 ~ Y IV (0w (X), @i(x) = ﬁexp(—%) (5.2

Here wi(x) is delta-function concentrated in the plane w; and J© is the vector of
this plane. The approximation of the scattered field E3(x) in Eqg. (2.11) takes the
form

ES(X) = —i % / K(x — X)) - J(X)QX)dx ~ —i4nczi: 1Dx) -3V, (5.3

1D (x) = % / K (x — X)gi (X )i (X)) dX'. (5.4)

Let usintroducealocal Cartesian basis (e}, €5, €}’) with the origin at thei -th node (the
unit vector €}’ coincides with the normal n® to w; at point x). In this local coordinate

system integral | (x) takes the form

thlZ2>

. 1 — _ _
Oy = —— —ik - — h? _
1(x) = 2% /K(k)<po(k) exp(—ik - x)dk, ¢o(k) =h exp< 2

HereK (k) hasform (2.18), k(k, ko, k3) isavector parameter of the 3D Fourier transform,
and k? = k2 4 k2. After calculating the integral in this equation by the same way as in
Egs. (2.19) and (3.14), the scalar product 1V (x) - IO in Eq. (5.3) in the local basis of the
i -th node takes the form

) ) 4
1Dx) -3V = D—KO[Fl(Ko, 1, )1+ 2Fa(ko, 1, O @

+25ign(¢) Fa(ko, 1, N @ p] - IV, n=¢€}, ko =kohy, (5.5)
1, 5. a1 X3 16! + o6 D1/2
= — = -, = e —— h = 7h.
e R - 1=
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Here the three functions F; (ko, n, ¢) are the one-dimensional integrals

1 o0
Fi(ko. 1. ¢) = Q/o [(2¢5 — %) Jo(kcn) — k2 To(icm)]

dk
x exp[ =K% = |£1B(k, k0)] ———,
ﬂ(KvKO) (56)
Falk ;)—i/wumex[ — 121 e, K0)] <
2(ko, 1, _8n02np 7013( )’

1 o0
Fa(ko,n.¢) = g/o Ju(kn) exp| —k* — |¢|B (k. ko) |k ? di,

where B («, ko) isdefined in EqQ. (2.22), and J,(2) isthe Bessel function of order n.

For small values of the arguments 1, z(p = (n? + ¢?)¥? < 10) these integrals may be
simply tabulated and kept in the computer memory. For p > 10 the following asymptotic
expressions for these integral s hold:

1 2 2 . Kg?]z .
5 (—1+xgp® — Bikop) exp — 7 ~ikop ),
3ik 3 K2n?
2 0 ol
2+ 2+ = exp( - —i 5.7
8rp <K°+ p +p2> p( p? K°p> &)
2 3ik 3 kdn?® .
Fg(KO,r/ () an;l( Kg+[()()+l()2> exp(_;))z—H(op)

Asaresult, Eq. (5.3) for ES(x) takesthe form

Fi(ko,n,¢) = o
n?

Fa(ko, 1, 0) =

Es(x)~—|47cmI“)(x) 0 = ZZ W (rN 3+ wp(r9) 3 e”, (5.9)

i . 16mcC p“) z M p(j) 2D
Wy () =i =~ | F1{ v, 2 F2 o,
11( ) D [ <K0 Ty hl) + (p(])> 2</<0 hy hl)

I327Tcr(1) (M ( p(]) Z(I))
Ko, 7—

D (p(]))2 2 hy

i . 167c p 20 rid o 2
llj r(J) = F ’ 2 2 F s T 0 ) 5.9
22( ) | D l 1<Ko h hl) + (p(”> 2<K0 h h1> (5.9

: 32710 o oz
Wy (rV) = D i Slgn(Z(J))Fg(Ko, e h_l)

327-[0 (J) . p(]) Z(J)
Wp(r) = =5 o )sgn(z(”)F3</<o, ™ ,hl>.

. ; . . . 1/2
2
r(J) —X—X(J) —I’(”e(lj)+r(“ (J)+Z(J)eg_”, p(” = |:(r](_1)) + (r;l))jl .

Let usintroduceaglobal Cartesian coordinatesystem (x2, x2, x9) withthebasis(e}”, &),

(0)) and aglobal spherical coordinate system (6, ¢, r) with the same origins. The polar axis

of the spherical system isdirected along vector €} and ¢ isthe angle between the vector €}”
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and the projection of the vector x ontheplane (x?, x9). Let usmovevector n‘) normal tothe
surface2 at the j -th nodeinto the origin of theglobal spherical systemusing parallel transfer
and let the spherical coordinates of the moved vector be (0}, ¢;, 1). Local Cartesian basis
e, &), &) at the j-th node is constructed by parallel transferring the basis (e, e, €;)
of the gIobaI spherical system at point (6;, ¢;, 1) to the j-th node x(

& =e0.¢.0, & =6e0,9.0, & =ea@®,¢,)=nb.

In this case the basis vectors of the local and global Cartesian systems are connected by
the equations

Vel (5.10)

where Q) and Q) arethe components of thematrix Q{1 and of the matrix Q1) transposed
in respect to QU respectively. The matrix Q1) has the form

_ COsf; CoSpj, COSH;Sing;, —sing;
QW =| —sng;j, cosgj, o |. (5.11)
sinfj cosgj, SiNg;singj  COSH,

Asit follows from Egs. (5.8)—«(5.11) in the global Cartesian system, the scattered field
ES(x) takesthe form

3 3
E00 ~ = > > (W (r) Qi 3 + w1 ) QR ). (512)

3 3
() =~ =00 (W) T+ ol ) T 3l
]

, (5.13)

rh — xO _ x(), -HEJ):ZQ(J) 30
s=1

The system for the components J;!’, I’ of the current follows from the boundary
conditions (2.14) in the form

Mn Mn
Z (AllllJ(J) |112J2(J)) — E](_)(X(I)), Z (AIZJlJ{]) + A|212J2(l)) — Eg(x(l))- (5.14)
=1 =1

Here E‘l).z(x(”) are the tangent components of the incident field E°(x) in the local basis
of thei-th node,

AR = ZZwl (rfTY, mn=12 (5.15)
i=1 k=1
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After solution of this system, the scattered field E® isto be constructed from Eq. (5.12).
If M isthe total number of the nodes, the linear system (5.14) may be rewritten in the
canonica form

BX =F, (5.16)
where the components of the square matrix B of dimensions (2M x 2M) are

Bij:Aile <M, j=M; Bij:Ail(zj_M), <M, j<M;

o . (5.17)
Bi=Ay ", i>M, j<M Bj=A,"I"" i>M, j>M,
and the components of vectors X and F are
Xi=d" i<M; =3 i>wm; (5.18)

F=EXxY), i<M; F=E3(x""™), i>M;

B inEq. (5.16) isadense matrix with maximal termsconcentrated near themain diagonal.
For a homogeneous distribution of the nodes on 2 matrix B is symmetric with the same
elements in the main diagonal.

6. NUMERICAL RESULTSIN THE 3D CASE

1. Let us consider a spherical surface 2 of unit radius (a = 1). In this case the local
basis (€}, €}, €]’ of the j-th node on  coincides with the basis (e, €,, €;) of the
global spherical system at this node. Let ko = koel¥ and e = €]” be the wave vector and
polarization vector of the incident field E°(x), respectively. An analytical solution of this
problem may be constructed by the method presented in [13].

For the application of the BPM, a homogeneous set of nodes on 2 was generated by the
algorithm described in the Appendix. In Fig. 7 the dependences of relative error A of the

numerical solutions on the number of surface nodes M are presented for Kpa = 1; 5; 8,

A Jo (134 — 1ID? de2
N Jo N12de

(6.1)

HereJ, isanumerical solution of Eq. (5.1), and J isan exact current distribution. InFig. 8
thedistributions of the scattered field intensity | n(0, ¢) = [rE(r, 6, (p)|r2=100 inthefar zone
aregivenfor ¢ = 0,0 <0 < 7 and kga = 1; 8. Solid lines in Fig. 8 correspond to exact
solutions, lines with triangles are numerical solutions for M = 328(h ~ 0.2), lines with
rhombs correspond to M = 508(h ~ 0.16), and lineswith dotsto M = 1148(h ~ 0.1). In
these calculations parameter D in approximation (5.2) wastaken D = 1.5.

2. Let us consider the diffraction problem for a thin disk of unit radius (2 = {(xf +

x3)2 < 1, x3 = 0}). The wave vector of theincident field is orthogonal to the disk surface
(ko = koes) and the polarization vector coincides with e.

For plane screens the final equations of the method are essentially simplified. The com-
ponents of the matrixes Amn in Eg. (5.15) take forms

Ag]in) :\I]mn(r(ij))a mn=1,2, (6.2
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FIG. 7. The dependence of the relative integral error A of the numerical calculation of surface current J(x)
in aspherical surface of unit radiusa = 1 on the number M of surface nodes, the line with triangles corresponds
to the relative wave number of the incident field koa = 1, with dots to kpa = 5 and with rhombsto kya = 8.

where the functions W, (r) are defined in Eq. (5.9). These functions are expressed viaonly
two functions F1, F, in Eq. (5.6) and the latter are in fact the functions of two variables kg
and n(¢ = 0on Q).

In Fig. 9 the distributions of the current moduli |J(X1, X2)| along the disk diameters
(13(x1, 0)| inthe left-hand side and |J(0, x2)| in the right-hand side of Fig. 9) are presented
for kga = 1; 10. Lines with sguares correspond to M = 81 (h = 0.2), lines with triangles
to M = 317(h = 0.1), lines with dotsto M = 797 (h = 0.0625), and solid linesto M =
1253 (h = 0.05).

0 1 2 3 0

FIG. 8. Theangle distribution of the intensity I n(9) of the far-scattered field for a spherical surface of unit
radiusa = 1 with various numbers M of surface nodes, for the wave numbers of incident field kpa = 1; 5. Lines
with triangles correspond to M = 328 (h ~ 0.2), lines with rhombs to M = 508 (h ~ 0.16), lines with dots to
M = 1148 (h ~ 0.1), solid lines are exact solutions.



190 S. K. KANAUN

(o | ko=1 ol k=1

11 ko=10

-15 1 -05 0 05 1 X1 -05 0 05 1 x2

FIG.9. Thedistribution of the surface current moduli |J(xy, X2)| inacircular disk of unit radiusa = 1 along
its diameter in the direction of axes x;, X, for kpa = 1; 10. Lines with squares correspond to a number of surface
nodes M = 81 (h = 0.2), with triangles to M = 317 (h = 0.1), with dots to M = 797 (h = 0.0625) and solid
linesto M = 1253 (h = 0.05).

The angular distributions of scattered field intensity 1n(9) = |[rES(r, 6, 0)|2_,o, in the
far zone are presented in Fig. 10.

The solutions of system (5.16) for 3D problems were obtained by the conjugate gradient
method [13] with the regularization parameter « = 0.01. The number of iterations was
taken in order to satisfy the original equation with the precision ~1%:

2M

>

2M
Binj —F
j=1

2M
<001 |Fil.
i=1

Note that the method used in this and in the previous sections for the discretization
of the 2D and 3D diffraction problemsis in essence the collocation method on the basis
of the Gaussian approximating functions. It is known that the properties of the systems of
linear algebraic equations obtained by the discretization procedure based on the method
of moments (MOM) are usually better then the properties of the systems obtained by the
collocation method [2]. In some cases the MOM may be also realized on the basis of the
Gaussian approximating functions. L et usconsider the problem of diffraction onanarbitrary
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FIG. 10. The angular distribution of the intensity | n(¢) of the far-scattered field for a circular disk for
various number of surface nodes and kpa = 1; 10. Lines with squares correspond to a number of surface nodes
M = 81 (h = 0.2), with trianglesto M = 317 (h = 0.1), with dotsto M = 797 (h = 0.0625) and solid lines to
M = 1253 (h = 0.05).

plane area 2. In this case the integral equation for the surface current takes the form similar
to Eg. (5.1)

47rc

o

where X1, X, are the Cartesian coordinatesin Q. Fourier transform L_J(k) of thekernel U(x)
of this equation isgiven in Eq. (2.23):

U(x —x)-IX)dx =0 -E%x), X =X(X1,X2), (6.3)

— . 1 5 .

Let usfind the solution of Eq. (6.3) in the form

LN 1 x — xi2
— 1)) J -
J(x) = .EZlJ Prx), () = eXp( oh ) (6.5)

where x! is a set of nodes in the area © with distances h between neighbor nodes. The
system for unknown coefficients JJ) in expansion (6.5) may be obtained by multiplication
of both parts of Eq. (6.3) withfunction ¢! (x)(j = 1,2, ..., M) and integration over al the
plane (X1, X2) (the procedure of the MOM). As a result we go to the following system of
linear algebraic equations for vectors J1):

M
DA IO =FY i=12..M (6.6)
j=1

A — | % //(pi OU(x — X! (x') dxdx’

. C — : i j
=|@/U(k)cp§(k)exp[—lk-(x —xD]dk,

(6.7)

21,2
po(k) = hzexp<— Dhk )

4
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After calculating thisintegral we obtain the equations for the components of tensors A1
in the forms

R oD p N2 oD
(i) _ 1
Ay =i D [Fl(Ko, h ,0> +2(p(ij) Fz(Ko, h ,0) ,

lGﬂr(IJ) (i) p(ij)
=i— D (p('l))z 2| Ko,

87 @ij) r<'J> 2 @ij)
(i _ o o
Ajj —I—D [Fl(Ko, hy 0) +2(p(”)) Fz(Ko, 7h2 ,0)],

D\Y2 , , y -
Ko = kohy, h2:h<2> i r(lJ)(ri'J)Jé'J)):X(I)_X(J), 1 = D),

(6.8)

Here F1, F; arethefunctionsdefinedin Egs. (5.6) and (5.7). The-right-hand side of Eg. (6.6)
takesthe form

F“):/e E%(x)¢' (x)dx_h—ze E°(xJ)exp< |XI_X]|2> (6.9)
2bh?2 )’ '

where the incident field E%(x) is approximated by an equation similar to Egs. (3.1) and
(6.5)

M

0 _i 00 (_|Xi—Xj|2>
%00 = o ;E xhexp( -5 ). (6.10)

Thus, the usage of the Gaussian approximating functionsin the framework of the method
of moments has the same merit as its usage in the collocation method: it saves the time of
calculation of the elements of the matrix of the discretized system. The functions Fy, F,
in Egs. (6.8) for the elements of this matrix have the forms of standard integrals (5.6)
and (5.7), and the latter may be previously tabulated and kept in the computer memory.
The numerical solutions abtained by the MOM practically coincide with the results of the
collocation method except around a small vicinity of the edge of the plane area 2. Note
that the relative error of the both methods is maximum in this region. In order to improve
the numerical results in the region of the edges the asymptotic behavior of the solution
(2.24) should be taken into account and the numerical agorithm needs modifications. For
the calculation of the elastic fields near crack edges, such a modification is discussed in
[7-9]. The same scheme may be used for improving the solution of electromagnetic wave
diffraction problemsin the vicinities of the edges of scattering surfaces.

7. CONCLUSION

The use of Gaussian approximating functions proposed in [3, 4] for the solution of the
electromagnetic wave diffraction problems on perfectly conducting screens has two main
advantages: thesimplicity of preparation, of theinitial data(the coordinates of surfacenodes
and surface orientations at the nodes), and a short time for the construction of the matrix of
the linear system obtained after the discretization of the problem. The collocation method
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or the method of moments may be used for such adiscretization. It isassumed that the basic
functions of the method ( fj (o, ¢, ) in the 2D case and F; (o, ¢, 1) in the 3D case) are
previously tabulated and kept in the computer memory.

The accuracy of the method depends on the density of surface nodes. The distances
between neighboring nodes should be about 0.05R; in order to have an acceptable accurate
solution (~1%). Here, R. isaminimal characteristic size of the surface (e.g., a curvature
radius, alinear size of the surface, etc.) or a characteristic scale of the incident field. The
influence of parameter D in the approximations (3.6), (5.2) on the accuracy of the solution
is not essential if 1 < D < 2. Outside of this region, the convergence of the method with
respect to h getsworse. Note that for the calculation of the scattered field in the far zone it
is better to choose the smallest values of D(D =~ 1). The convergence with respect to h is
faster in this case.

There is a specific difficulty in the application of numerical methods to the solution of
the diffraction problems for perfectly conducting screens. In some cases, depending on
the shape of the screen and frequency of the incident field, the linear system obtained
after discretization of the problem may be ill-posed. For instance, such an ill-posed system
may appear for low frequencies (quasistatics) because the original homogeneous integral
Eq. (2.15) has nontrivial solutions in the static case (see [11, 12]). Nontrivial solutions of
the homogeneous equation (2.15) may exist aso for some discrete values of frequencies
(see[1], Chapter 6, for details). The application of the LU-decomposition algorithm to the
solution of theseill-posed systemsgiveshighly oscill ating distributions of the surfacecurrent
and these oscillations do not disappear when the number of surface nodes increases. These
ill-posed problemsmay be successfully solved using theregul arization al gorithms described
in[15, 16]. But the estimation of the so-called regularization parameter that appearsin these
algorithms demands additional computational work. It isworth noting that the far scattered
fields are not sensitive to the value of the regularization parameter. “Regularized” and
“nonregularized” (oscillating) numerical solutions for the current usually give very close
results for the intensity of the far scattered field distributions.

The method devel oped in this study for the solution of the el ectromagnetic wave diffrac-
tion problems may be applied to a wide class of the problems of mathematical physics
that are reduced to surface pseudo-differential equations. In particular, the problems of
electrostatics, static elasticity, and el asto-plasticity, the problems of elastic wave diffraction
on inclusions and cracks, etc., may be successfully solved with the help of the developed
version of BPM.

APPENDIX

Let us consider a rectangular area S= {0 < X; < a, 0 < X2 < b} in the plane (x1, x2),
where a smooth unique value function f (x1, X2) is defined. In order to cover surface Q2 =
{Xs = f (X1, X2)} by homogeneous set M}, of nodes with distance h between neighboring
nodes, let us introduce afine regular square mesh on S. Step hg of the fine mesh should be
much less than h(hg <« h) and hq defines the accuracy of the node coordinate definition in
theset My,. Let

2y =ho(i — 1. z)=ho(j - 1. (.j.=12..) (A2)

be the coordinates of the fine mesh.
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Let us choose an arbitrary point x® (x{V, x5V

introduce the function

) inside Sas an initial node of set My, and

e -1
P(r) Iy )2n

where« isasmall parameter and n isalarge parameter. Thisfunction hasaunique minimum
(P =0)a pointr = h andittendsto 1 whenr — oo with a speed that depends on n. In
the calculations, n = 10 and « = 0.1 were taken.

Point x with coordinates (x{?, xi?') is spaced at distance h from x@, if x provides

minimum to the function P(r @ (y;, y»))

@ — D (3@ @
(yln;i)ncsp(r (V1. ¥2)) = P(rP(x”. 7)),

, O<axl n>»1, (A.2)

o

=l

(A.3)
r®(yr, y2) = [(y1— Xil)) + (Y1 — Xil))2 + (f(y1, y2) — f(Xil), (1)))2} vz,

In order to find the coordinates of this minimum let us construct matrix P® with the
components

PP =Pr®(z. 2)) (A.4)

that are the values of P(r(yy, y»)) at the nodes of the fine mesh in Eq. (A.1). If the
minimal element of this matrix has indexes i, j,, the node x® is placed at the point with
coordinates (22, 2?") according to Eq. (A.1).

In order to obtain the coordinates of thenodesx®, x®¥, .. ., let usintroduce the function

=Y

k
Wy, y2) = 1 > PV v2)),
i=1

| | (A5)
rOyn, y2) = [(yo = x4 (y1 = x4 (F oy yo) — £ (0, x$))? Y2,

For the calculation of the coordinates of the node x® let us take k = 2 in this formula
Minimum of W(2, y1, Y») isachieved at point x® that is at the same distance h from points
xD and x@ . Let us calculate the elements of the matrix P@

PP =w(2.2. 7)) (A.6)

at the nodes of the fine mesh. The minimal element if this matrix with indexesis, j3 gives
us coordinates (2%, 2 of the point x® according to Eq. (A.1).

In the same way the coordinates of the node x provide minimum to the function
W(i — 1, y1, y2) and this minimum should be found at the nodes of the fine mesh. The
process is stopped if the minimal value of W(i — 1, y;, y») becomes more than 1. It means
that all the surface 2 is completely covered by the nodes and any additional node has a
neighboring node at the distance that is less than h.

The number of termsin Eg. (A.5) grows together with the number of nodes. Therefore,
the rate of the calculating process decreases when the number of the constructed node
coordinates grows. In order to avoid lengthy calculations, the area S should be divided
into several bands (subareas) S (S=US) (eg., S = {a < X1 < bj, 0 < X, < b}) andthe
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generation of the nodes may be produced in every band independently. In this case only
the nodes in the nearest band with respect to the band where nodes are being constructed
should be taken into account in the sum (A.5).
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